A Wireless Three-way Antenna Switch & Display

by Stan Ekiert, K3KKH

Agenda

□ Introduction

- **Given Switch Box Requirements**
- **Given Switch Box Design**
- **Switch Box Construction**
- **D** Power Handling Capability
- □ Antenna Selection Display
 - Requirements
 - Design
 - Construction
- **Conclusions**

A weatherproof coaxial switch

Introduction

- The motivation for this project is due to the HOA restrictions in my townhouse community
- □ I was able to run a single RG-213 cable between the townhouse and my Quad Vertical Array (**Ref. # 1**)
- □ In 2015 I added a dipole in an attempt to get some directionality
 - Options for switching antennas are mechanical or wireless
 - I weatherproofed a Diamond CX310, mechanical coaxial switch [Ref. #2]
 - The weatherproofing worked well but the switching lacked convenience

In 2017 I decided add a second dipole and change the switching approach to allow me to

- select one of the three antennas
- switch my balun between the dipoles
- perform all of this from the comfort of my shack.

Ref #1: Stan Ekiert, K3KKH, A Stealthy Vertical Antenna, QST , Aug 2016, pp 37-40
Ref #2: Stan Ekiert, K3KKH, Weatherproofing a Coaxial Switch, Hints and Kinks, QST, Feb 2017, pp 70-71

Requirements

- □ Use wirelessly technology to select one of three antennas from my basementlevel shack (below ground) to a switch panel 55 feet away
- Withstand all weather conditions: driving rain, ice and snow, and freezing temperatures
- □ Operate remotely from a 12 volt battery
- □ Operate at the full legal power on SSB (50% operator duty cycle)
- Operate HF through 6 meters
- Display the selected antenna

Switch Box Design

Use a wireless relay to select one of two, high-current capacity, power relays. The power relays, capable of handling full legal limit, would then perform the actual balun and antenna switching.

This approach requires a dual-channel wireless relay, with one channel assigned to each power relay.

□ Wireless Relay: 2 Channel DC Wireless Receiver & Transmitter, model WR-02, manufactured by AGT (All German Technology).

WR-02 Wireless Relay

- □ The unit contains two remote controls (transmitters), and one receiver
- Uses an 8-bit encoding scheme
- Multiple receivers can be programmed to respond to a common set of controllers
- □ Transmits at 315 MHz with an advertised range of 150 feet
- Each receive channel is capable of independently switching 5 amps at 12 volts DC
- Pull-in Voltage = 8.4 volts
- Drop-out Voltage = 4.2 volts
- No-load current = 50 ma/channel
- Controllers are powered by a
- single 23A, 12 volt alkaline battery
- **C** Receiver is $2\frac{1}{2} \times 2\frac{1}{4} \times 1\frac{3}{8}$ in.

Power Relays

12 volt DC double-pole double-throw, 700 Series Magnecraft "Ice Cube" Power Relays and Mounts, models 782XBXC-12D and 16-782C1

Relays can be operated in any orientation

□ The AC contact rating is 15 amps

Pole-to-pole dielectric rating of 2500 volts rms (3535 volts peak)

Pull-in Voltage = 9.6 volts

Drop-out Voltage = 1.2 volts

□ No-load current = 75 ma

Dimensions: 1.5" x 1.06" x 1.1"

Switch Box Schematic

When the relays are un-powered Antenna-1 is connected to the Shack
 RE-1 switches the dipoles. RE-2 selects either the dipole leg or QVA
 The maximum current draw, with all relays and LEDs active, is 275 ma.

Switch Box Construction

- 10 ¼" x 7" x 4", Velleman G378, PVC enclosure. The cover (not shown) is gasketed for a waterproof fit.
- All hardware is 8-32 stainless, except for the 4-40 brass hardware used to mount the SO-239 connectors
- AWG #14 THNN wire was used to connect RE-1 to its Ports
- 4.5" long, 50 ohm transmission lines made from AWG #16 Formvar wire were used to connect RE-2 to its Ports. These are all 50 ohm ports.
- The transmission lines were built by placing two Formvar wires parallel to each other and securing them with heat shrink tubing and tie-wraps

Parallel Wire Transmission Line

Conductor Spacing (S), mils

Transmission Line Performance

Achieving a 50 ohm line with reasonable SWR up to 60 MHz was a challenge, requiring several attempts using various materials and spacing

□ The best results were achieved with S=0, when the lines were "straight"

□ The impedances change significantly when they were bent and twisted in order to solder them to their respective terminals

Wireless Relay Antenna Support

A 9" x 1" x 1/8" Plexiglas L-bracket provides support for the AGT antenna
 The antenna wire was stiffened with a length of 2mm fishing line and the combination secured with heat shrink tubing

□ The antenna wire/fishing line pair was tie-wrapped to the L-bracket which was hot glued to the top of the enclosure

Switch Box- Front View

Clockwise from the top left:

- □ 1:4 Guanella balun
- Switch box
- **Remote antenna tuner**

 All components were mounted to a Polypropylene cutting board, 16" x 16" x .375"

Operational May 2017

Switch Box- Rear View

□ The green external display indicates which channels are active

□ On the backside of the cutting board, two parallel 1"dia PVC tubes, spaced 3" apart were screwed to the panel to form a cradle which allowed the assemble to be securely mounted to a tree with tie-wraps

12 volt 7 Ah SLA battery housed in a Snapware 16 cup, 9.15"x7.35"x5.28" food enclosure

Power Handling Capabilities

- **Requirement**: Operate at full legal power on SSB (50% operator duty cycle)
- Approach: Establish the power capability by ensuring that the voltage and current limits of various components are not exceeded, for a matched (R_L = 50) and missmatched load (R_L = 1000, SWR = 20:1)

Component Limits

- AWG # 16 Formvar wire
 - Breakdown voltage is 11,300 volts (Ref. #3)
 - > 3.7 amps, de-rated to 1.85 amps (two wired in close proximity)
- Power Relays
 - > 3535 volts peak, pole-to-pole
 - 15 amp contact rating

Ref. #3: ssex Formvar, Magnetic Wire/Winging Wire, Product Data Sheet, https://essexwire.com/sites/essexwire.com/files/2017-08/Essex-Wire-Datasheet-Formvar-EN.pdf

Lossless Transmission Line Model

•
$$I_L = \frac{V_s}{R_s + Z_0} e^{-j\beta l} (1 - \Gamma)$$
, amps peak Eq.2

•
$$P_L = \frac{1}{2} \Re e \left\{ V_L I_L^* \right\} = \frac{|V_S|^2 Z_0}{2(R_S + Z_0)^2}$$
, watts Eq.3

Power Handling for a Matched Load

 $\square R_L = Z_0 = 50, ohms$

 $\Box \Gamma = 0, SWR = 1.0:1$

\Box For P_L = 1500 watts on SSB (50% operator duty cycle)

•
$$V_S = \sqrt{\frac{2 \times 10^4}{50}} P_L = \sqrt{400 \times 1500} = 774.5 \text{ volt peak}, \qquad from Eq.3$$

- $V_L = V_S/2 = 387.2 \text{ volts peak},$ from Eq. 1
- $I_{L,SSB} = .2 \times .5(774.5/100) = 0.775 \text{ amps peak} = 0.548 \text{ amps rms}, \text{ from Eq. 2}$

 \Box $I_{L,CW} = .4 \times .5(774.5/100) = 1.549 amps peak = 1.096 amps rms$

 \Box $I_{L,all other modes} = 1.0 \times .5(774.5/100) = 3.87 amps peak = 2.74 amps rms$

A Max power for modes with 100% duty cycles, limited by **1.85 amps rms** is

•
$$P_{L,max} = \left(\frac{I_{L,max}}{.5}\right)^2 R_L = 50 \times \left(\frac{1.85}{.5}\right)^2 = 685 \text{ watts}$$

Power Handling for a Miss-matched Load

 \square $R_L > 50$ ohms, $V_{L, max}$ and $I_{L, min}$ occur at the load

• $R_L = 1000, ohms, \Gamma = 0.9, SWR = 20:1$

\Box For P_L = 1500 watts on SSB (50% operator duty cycle)

• From Eq. 1:

$$V_L = \frac{774.5 \times 50}{100} e^{-j\beta l} [1 + .9] = 737.4 e^{-j\beta l}$$

 $V_L = 737.4 \text{ volts peak}$

Applying the duty cycles to Eq.2:

 *I*_{L, SSB} = .2 × .5 {^{774.5}/₁₀₀ [1 − .9]e^{-jβl}} = 0.0737e^{-jβl}

 *I*_{L, SSB} = 0.0737 amps peak, = 0.052 amps rms

 $\Box |I_{L, CW}| = 0.104 \text{ amps rms}$

Power Handling Conclusions

Power Handling Capability

- $P_{L,SSB} = 1500$ watts
- $P_{L,CW} = 1500 \ watts$
- $P_{L,All other modes} = 685 watts$
- □ All voltage and currents for the above power limits are well within component limits for matched and mismatched (SWR= 20:1) loads

Antenna Selection Display

Requirements

Design

Construction

Antenna Selection Display

Requirements

- Indicate which antenna of the three antennas was selected
- Indicate when <u>both</u> Channel A and B are active
 - If both channels are active, only the QVA is connected to the Shack while RE-1 is connected to antenna-2 drawing unnecessary battery current
 - Knowing that both channels are active, I can deactivate Channel A and increase the time between battery charging cycles

Design

- Use a second WR-02 in the Display to indicate which antenna was selected
- The second WR-02 was reprogrammed so that both wireless relays, one in the Switch Box and another in the Antenna Display, produce the same response from one set of controllers

Antenna Display Design (Continued)

□ The Requirements were translated into a Truth Table for implementation

Display Truth Table					
Inputs		Outputs			
Ch. A	Ch. B	Ant #1	Ant #2	QVA	Both On
0	0	1	0	0	0
0	1	0	0	1	0
1	0	0	1	0	0
1	1	0	1	1	1

□ From the Truth Table four Boolean equations were generated, one for each output

Ant #1 = A' & B' = (A + B)'Ant #2 = A & B' + A & B = A & (B' + B) = A & 1 = A QVA = (A' & B) + (A & B) = B & (A' & A) = BBoth On = A & B = (A' + B')'

Display Schematic

- Boolean equations implemented in Resistor-Transistor Logic (RTL)
- Q1 and Q5 are NOR circuits
- Q3 and Q4 are Inverter circuits
- **Q2** and Q6 are emitter followers
- A 9 volt wall wort powers the display

Display PCB

□ A 2" x 5" Velleman 3-hole Island Eurocard PCB was used to wire the display

□ The 3-hole island pattern was replicated and virtually wired in Microsoft Visio

Display Construction

□ The enclosure is a repurposed 5"x 2.5" x 6" project box

□ The rear panel (right) contains

- Wall wort connector
- Power switch

□ The front panel (left) contains

- LED indicating power
- 3 LEDs indicating antenna selection

Reprogramming the Second WR-02

Hold down the pushbutton until the LED lights

Select one of the "remote controls" for the Switch Box, hold button A for a few seconds

Verify that this control activates both Ch A and Ch B

□ Select the **other** remote control for the Switch Box, and repeat the above process only this time, hold button B for a few seconds

Again verify that the second control activates both channels

Front & Rear Panel Graphics

- □ The front and rear panel graphics were generated in Microsoft Visio
- The <u>mirror image</u> of the graphics was printed onto an ultra-thin plastic transparency

□ After cutting out the graphics, the "ink" side of each was glued to the respective panel using 3M Super 77 Multipurpose (spray) Adhesive

This produces a scratch resistance display

Conclusions

The wireless switch-box has been a major addition to my shack allowing me to rapidly switch between antennas during contests or while chasing DX-all from the comfort of my shack.

Antenna display unit sitting atop my Kenwood TS-590s

Questions ? Comments ?