A Wireless Three-way Antenna Switch \& Display

by
Stan Ekiert, K3KKH

Agenda

\square Introduction
\square Switch Box Requirements
\square Switch Box Design
\square Switch Box Construction
\square Power Handling Capability
\square Antenna Selection Display

- Requirements
- Design
- Construction
\square Conclusions

Introduction

A weatherproof coaxial switch

- The motivation for this project is due to the HOA restrictions in my townhouse community
\square I was able to run a single RG-213 cable between the townhouse and my Quad Vertical Array (Ref. \# 1)
\square In 2015 I added a dipole in an attempt to get some directionality
- Options for switching antennas are mechanical or wireless
- I weatherproofed a Diamond CX310, mechanical coaxial switch [Ref. \#2]
- The weatherproofing worked well but the switching lacked convenience
- In 2017 I decided add a second dipole and change the switching approach to allow me to
- select one of the three antennas
- switch my balun between the dipoles
- perform all of this from the comfort of my shack.

Ref \#1: Stan Ekiert, K3KKH, A Stealthy Vertical Antenna, QST , Aug 2016, pp 37-40
Ref \#2: Stan Ekiert, K3KKH, Weatherproofing a Coaxial Switch, Hints and Kinks, QST, Feb 2017, pp 70-71

Requirements

\square Use wirelessly technology to select one of three antennas from my basementlevel shack (below ground) to a switch panel 55 feet away
\square Withstand all weather conditions: driving rain, ice and snow, and freezing temperatures
\square Operate remotely from a 12 volt battery
\square Operate at the full legal power on SSB (50\% operator duty cycle)
Operate HF through 6 meters
\square Display the selected antenna

Switch Box Design

\square Use a wireless relay to select one of two, high-current capacity, power relays. The power relays, capable of handling full legal limit, would then perform the actual balun and antenna switching.

This approach requires a dual-channel wireless relay, with one channel assigned to each power relay.
\square Wireless Relay: 2 Channel DC Wireless Receiver \& Transmitter, model WR-02, manufactured by AGT (All German Technology).

WR-02 Wireless Relay

\square The unit contains two remote controls (transmitters), and one receiver
\square Uses an 8-bit encoding scheme
\square Multiple receivers can be programmed to respond to a common set of controllers
\square Transmits at 315 MHz with an advertised range of 150 feet
\square Each receive channel is capable of independently switching 5 amps at 12 volts DC
\square Pull-in Voltage $=8.4$ volts
[Drop-out Voltage $=4.2$ volts
\square No-load current $=50 \mathrm{ma} /$ channel
\square Controllers are powered by a single 23A, 12 volt alkaline battery
\square Receiver is $2 \frac{1}{2} \times 2 \frac{1}{4} \times 1 \frac{3}{8} \mathrm{in}$.

Power Relays

12 volt DC double-pole double-throw, 700 Series Magnecraft "Ice Cube" Power Relays and Mounts, models 782XBXC-12D and 16782C1
\square Relays can be operated in any orientation

The AC contact rating is 15 amps
\square Pole-to-pole dielectric rating of 2500 volts rms (3535 volts peak)
\square Pull-in Voltage $=9.6$ volts
\square Drop-out Voltage $=1.2$ volts

\square No-load current $=75 \mathrm{ma}$
\square Dimensions: $1.5^{\prime \prime} \times 1.06^{\prime \prime} \times 1.1^{\prime \prime}$

Switch Box Schematic

\square When the relays are un-powered Antenna-1 is connected to the Shack
\square RE-1 switches the dipoles. RE-2 selects either the dipole leg or QVA
\square The maximum current draw, with all relays and LEDs active, is 275 ma.

Switch Box Construction

D $101 / 4^{\prime \prime} \times 7^{\prime \prime} \times 4^{\prime \prime}$, Velleman G378, PVC enclosure. The cover (not shown) is gasketed for a waterproof fit.

- All hardware is 8-32 stainless, except for the $4-40$ brass hardware used to mount the SO-239 connectors
- AWG \#14 THNN wire was used to connect RE-1 to its Ports
- 4.5" long, 50 ohm transmission lines made from AWG \#16 Formvar wire were used to connect RE-2 to its Ports. These are all 50 ohm ports.
\square The transmission lines were built by placing two Formvar wires parallel to each other and securing them with heat shrink tubing and tie-wraps

Parallel Wire Transmission Line

\square Characteristic Impedance of a parallel wire transmission line is

$$
Z_{0}=\frac{120 \operatorname{arcosh}(D / 2 a)}{\sqrt{\varepsilon_{r}}}
$$

where
ϵ_{r} is the relative permittivity of the medium
D is the center-to-center spacing of the conductors
a is the conductor radius.

Transmission Line Performance

\square Tuner to balun port $=$ TL6 + TL14

- Tuner to QVA port $=$ TL6 + TL12
A. Achieving a 50 ohm line with reasonable SWR up to 60 MHz was a challenge, requiring several attempts using various materials and spacing
\square The best results were achieved with $S=0$, when the lines were "straight"
\square The impedances change significantly when they were bent and twisted in order to solder them to their respective terminals

Wireless Relay Antenna Support

A A" $\times 1^{\prime \prime} \times 1 / 8^{\prime \prime}$ Plexiglas L-bracket provides support for the AGT antenna \square The antenna wire was stiffened with a length of 2 mm fishing line and the combination secured with heat shrink tubing
\square The antenna wire/fishing line pair was tie-wrapped to the L-bracket which was hot glued to the top of the enclosure

Switch Box- Front View

Operational May 2017

Clockwise from the top left:

- 1:4 Guanella balun
- Switch box
\square Remote antenna tuner
\square All components were mounted to a Polypropylene cutting board, $16^{\prime \prime} \times 16^{\prime \prime}$ x $.375{ }^{\prime \prime}$

Switch Box- Rear View

\square The green external display indicates which channels are active
\square On the backside of the cutting board, two parallel 1"dia PVC tubes, spaced 3" apart were screwed to the panel to form a cradle which allowed the assemble to be securely mounted to a tree with tie-wraps

$\square 12$ volt 7 Ah SLA battery housed in a Snapware 16 cup, 9.15 "x7.35"x5.28" food enclosure

Power Handling Capabilities

\square Requirement: Operate at full legal power on SSB (50\% operator duty cycle)
\square Approach: Establish the power capability by ensuring that the voltage and current limits of various components are not exceeded, for a matched ($R_{L}=50$) and missmatched load ($R_{L}=1000, S W R=20: 1$)
\square Component Limits

- AWG \# 16 Formvar wire
$>$ Breakdown voltage is 11,300 volts (Ref. \#3)
> 3.7 amps , de-rated to 1.85 amps (two wired in close proximity)
- Power Relays
>3535 volts peak, pole-to-pole
> 15 amp contact rating

Lossless Transmission Line Model

\square At the load, $z^{\prime}=0$

- $V_{L}=\frac{V_{s} z_{0}}{R_{s}+Z_{0}} e^{-j \beta l}(1+\Gamma)$, volts peak
- $I_{L}=\frac{V_{s}}{R_{s}+Z_{0}} e^{-j \beta l}(1-\Gamma)$, amps peak
- $\quad P_{L}=\frac{1}{2} \Re e\left\{V_{L} I_{L}{ }^{*}\right\}=\frac{\left|V_{S}\right|^{2} Z_{0}}{2\left(R_{s}+Z_{0}\right)^{2}}$, watts

Eq. 1

Eq. 2

Eq. 3

Power Handling for a Matched Load

$\square R_{L}=Z_{0}=50$, ohms
$\square \Gamma=0, S W R=1.0: 1$
\square For $\mathrm{P}_{\mathrm{L}}=1500$ watts on SSB (50\% operator duty cycle)

- $V_{S}=\sqrt{\frac{2 \times 10^{4}}{50} P_{L}}=\sqrt{400 \times 1500}=774.5$ volt peak,
from Eq. 3
- $V_{L}=V_{S} / 2=387.2$ volts peak, from Eq. 1
- $I_{L, S S B}=.2 \times .5(774.5 / 100)=0.775 \mathrm{amps}$ peak $=0.548 \mathrm{amps} \mathrm{rms}$
from Eq. 2
- $I_{L, C W}=.4 \times .5(774.5 / 100)=1.549 \mathrm{amps} p e a k=1.096 \mathrm{amps} \mathrm{rms}$
$\square I_{L, \text { all other modes }}=1.0 \times .5(774.5 / 100)=3.87 \mathrm{amps}$ peak $=2.74 \mathrm{amps} \mathrm{rms}$
\square Max power for modes with 100% duty cycles, limited by 1.85 amps rms is
- $P_{L, \max }=\left(\frac{I_{L, \max }}{.5}\right)^{2} R_{L}=50 \times\left(\frac{1.85}{.5}\right)^{2}=685$ watts

Power Handling for a Miss-matched Load

$\square R_{L}>50$ ohms, $V_{L, \max }$ and $I_{L, \text { min }}$ occur at the load

- $R_{L}=1000, o h m s, \quad \Gamma=0.9, \quad S W R=20: 1$
\square For $P_{L}=1500$ watts on SSB (50\% operator duty cycle)
- From Eq. 1:
$>V_{L}=\frac{774.5 \times 50}{100} e^{-j \beta l}[1+.9]=737.4 e^{-j \beta l}$
> $\left|V_{L}\right|=737.4$ volts peak
- Applying the duty cycles to Eq.2:
$>I_{L, S S B}=.2 \times .5\left\{\frac{774.5}{100}[1-.9] e^{-j \beta l}\right\}=0.0737 e^{-j \beta l}$
$>\left|I_{L, S S B}\right|=0.0737$ amps peak, $=0.052 \mathrm{amps} \mathrm{rms}$
- $\left|I_{L, C W}\right|=0.104 \mathrm{amps} \mathrm{rms}$

Power Handling Conclusions

\square Power Handling Capability

- $P_{L, S S B}=1500$ watts
- $P_{L, C W}=1500$ watts
- $P_{L, \text { All other modes }}=685 \mathrm{watts}$
\square All voltage and currents for the above power limits are well within component limits for matched and mismatched (SWR=20:1) loads

Antenna Selection Display

\square Requirements
\square Design
\square Construction

Antenna Selection Display

\square Requirements

- Indicate which antenna of the three antennas was selected
- Indicate when both Channel A and B are active
- If both channels are active, only the QVA is connected to the Shack while RE-1 is connected to antenna-2 drawing unnecessary battery current
- Knowing that both channels are active, I can deactivate Channel A and increase the time between battery charging cycles
\square Design
- Use a second WR-02 in the Display to indicate which antenna was selected
- The second WR-02 was reprogrammed so that both wireless relays, one in the Switch Box and another in the Antenna Display, produce the same response from one set of controllers

Antenna Display Design (Continued)

\square The Requirements were translated into a Truth Table for implementation

Display Truth Table

Inputs		Outputs			
Ch. A	Ch. B	Ant \#1	Ant \#2	QVA	Both On
0	0	1	0	0	0
0	1	0	0	1	0
1	0	0	1	0	0
1	1	0	1	1	1

\square From the Truth Table four Boolean equations were generated, one for each output

$$
\begin{aligned}
& \text { Ant } \# 1=A^{\prime} \& B^{\prime}=(A+B)^{\prime} \\
& \text { Ant } \# 2=A \& B^{\prime}+A \& B=A \&\left(B^{\prime}+B\right)=A \& 1=A \\
& \text { QVA }=\left(A^{\prime} \& B\right)+(A \& B)=B \&\left(A^{\prime} \& A\right)=B \\
& \text { Both On }=A \& B=\left(A^{\prime}+B^{\prime}\right)^{\prime}
\end{aligned}
$$

Display Schematic

\square Boolean equations implemented in Resistor-Transistor Logic (RTL)
Q Q1 and Q5 are NOR circuits
Q Q3 and Q4 are Inverter circuits
\square Q2 and Q6 are emitter followers
\square A 9 volt wall wort powers the display

Display PCB

\square A 2" $\times 5^{\prime \prime}$ Velleman 3-hole Island Eurocard PCB was used to wire the display
\square The 3-hole island pattern was replicated and virtually wired in Microsoft Visio

Display Construction

\square The enclosure is a repurposed 5 "x $2.5^{\prime \prime} \times 6^{\prime \prime}$ project box
\square The rear panel (right) contains

- Wall wort connector
- Power switch
\square The front panel (left) contains
- LED indicating power
- 3 LEDs indicating antenna selection

Reprogramming the Second WR-02

Hold down the pushbutton until the LED lights
\square Select one of the "remote controls" for the Switch Box, hold button A for a few seconds
\square Verify that this control activates both Ch A and Ch B

Select the other remote control for the Switch Box, and repeat the above process only this time, hold button B for a few seconds
\square Again verify that the second control activates both channels

Front \& Rear Panel Graphics

The front and rear panel graphics were generated in Microsoft Visio
The mirror image of the graphics was printed onto an ultra-thin plastic transparency
\square After cutting out the graphics, the "ink" side of each was glued to the respective panel using 3M Super 77 Multipurpose (spray) Adhesive
\square This produces a scratch resistance display

Conclusions

The wireless switch-box has been a major addition to my shack allowing me to rapidly switch between antennas during contests or while chasing DX-all from the comfort of my shack.

Antenna display unit sitting atop my Kenwood TS-590s

